Fabrication de cristaux photoniques 3D: « BANDE INTERDITE »

0

Fabrication de cristaux photoniques 3D: «BANDE INTERDITE» 

Introduction
I. Qu'est une bande interdite photonique ? 
 II. Caractérisation théorique 
 III. Illustration du phénomène 
 Conclusion

Introduction 

Durant ce projet, nous nous sommes intéressés à la fabrication de cristaux photoniques, structures périodiques de matériaux diélectriques modifiant la propagation des ondes électromagnétiques.
 Les matériaux à bande interdite photonique (BIP) ou cristaux photoniques sont des structures modifiant la propagation des ondes électromagnétiques. Il en existe 3 formes qui sont caractérisées par le nombre de directions de la périodicité de l’indice optique:

  •  - Périodicité dans une seule direction : cristal photonique 1D (ou miroir de Bragg) 
  • - Périodicité dans deux directions de l’espace : cristal photonique 2D ;
  •  - Périodicité dans toutes les directions de l’espace : cristal photonique 3D.

 La propriété la plus utilisée et la plus intéressante lorsqu’on parle des cristaux photoniques met en jeu la notion de bande interdite. En effet, à cause de la périodicité des indices optiques des matériaux qui les constituent, ces cristaux peuvent empêcher la propagation de la lumière pour certaines gammes de longueur d’onde : ces gammes sont appelés bandes interdites photoniques.
 Dans ce rapport, nous avons donc choisi de travailler sur la caractérisation théorique de cette bande. Cela nous semble être l’aspect technique le plus intéressant à développer car il est le plus en adéquation avec notre cursus actuel et surtout cela nous permet de démontrer théoriquement ce que l’on a mis en évidence expérimentalement. 
Ce rapport s’articulera autour de 3 axes : 

  • -Le premier présentera le concept de « bande interdite photonique» 
  • -Le deuxième sera consacré aux calculs théoriques qui découleront sur la caractérisation de cette gamme de longueur d’onde 
  • -Le dernier chapitre nous permettra d’illustrer la notion de BIP en quantifiant la bande interdite de 2 cristaux photoniques 1D (GaAs/Air et GaAs/GaAsIAs). 

. Présentation de la bande interdite

Notion fondamentale lorsqu’on parle de cristaux photoniques, le terme de bande interdite (ou « band gap »), a été introduit par Lord Rayleigh en 1887 pour expliquer pourquoi des structures tels que les miroirs de Bragg (une sorte de cristal photonique 1D) possédaient une très grande réflectivité exclusivement pour certaines longueurs d’onde.
C’est 1987, avec les travaux de Eli Yablonovitch et de John Sajeev, que les concepts de cristaux photoniques 2D et 3D furent créer, et avec eux ceux des BIP multidimensionnels
En physique du solide le comportement des photons dans un cristal photonique est régit par la périodicité de l’indice optique des 2 milieux qui composent le cristal. Cette périodicité autorise ou interdit la propagation des photons pour certaines énergies et certaines directions de propagation: en claire les photons ne peuvent pas traverser le cristal avec n’importe quelle énergie. 
Grâce à la périodicité des indices des 2 milieux, on peut appliquer le théorème de Bloch [1]. Ainsi, les relations de dispersion qui en découlent, aussi appelées structures de bande, donnent les énergies en fonction des vecteurs d’ondes et sont donc constitués de bandes permises (où la propagation est autorisée) et de bandes interdites (où elle ne peut pas avoir lieu).
L’étude de la structure de bandes d’un cristal photonique est essentielle car elle est riche en informations. En effet, elle permet de connaître :
  • les états permis dans le cristal photonique, “les modes de Bloch”;
  • -les densités d’états associés aux modes de Bloch;
  • les positions et les largeurs des bandes interdites;
  • la répartition du champ électromagnétique dans le cristal. 
On peut donc affirmer que l’étude des bandes interdites photoniques constitue, avec la fabrication des dits cristaux, la base de cette discipline. 

Calculs théoriques 

Illustration du problème

Afin d’illustrer cette notion de bande interdite photonique, nous allons considérer un milieu constitué d’une alternance de couches d’épaisseur 0,5a dans une seule direction de deux matériaux différents. Il s’agit donc d’un miroir de Bragg (un cristal photonique 1D). Le principe est le même pour les cristaux photoniques 2D et 3D mais les calculs sont plus lourds et doivent être résolus numériquement. L’avantage des 3D est que la lumière peut être réfléchie quel que l’angle d’incidence.
Nous allons donc considérer un milieu constitué d’une alternance de couches d’épaisseur 0,5a d’Arséniure de gallium ou GaAs [8] et d’un autre milieu (air puis GaAsIAs). Prenons par exemple une onde plane électromagnétique de vecteur d’onde k selon la direction de l’empilement des couches. A chaque interface, cette onde va être en partie réfléchie et transmise : l’onde va donc se réfléchir à chaque interface de cellule périodique élémentaire pour donner une onde de vecteur d’onde – k: 

Conclusion

Nous avons théorisé puis illustré l’ouverture d’une bande de fréquences où aucun mode n’est accessible, c’est à dire une bande interdite photonique qui existe quelles que soient les caractéristiques de l’empilement du cristal et pour n’importe quelle direction de propagation de l’onde. 
Malheureusement, les cristaux photoniques 1D ne permettent de réfléchir que des photons ayant une direction de propagation proche de la normale à l’empilement. 
La réalisation d’un matériau périodique à deux ou trois dimensions (cristal photonique 2D ou 3D) permet une généralisation de ce concept. Dans ce cas, la bande interdite s’obtient par recouvrement des bandes interdites unidimensionnelles de toutes les directions du plan et de l’espace (voir figure 2.1 page 7). Cependant, contrairement au cas unidimensionnel où la bande interdite suivant la normale existe quelles que soient les caractéristiques du cristal photonique, l’ouverture d’une bande interdite à deux ou trois dimensions dépend de plusieurs autres facteurs : le réseau périodique, le motif et la périodicité des indices de réfraction entres autres (ceci est expliqué plus en détail dans la thèse de Mme Lydie FERRIER) [11]. 
On peut aussi remarquer que l’étude des bandes interdites (et donc des cristaux photoniques en général) fait intervenir de nombreux domaines de la physique (mécanique quantique, optique, électromagnétisme et physique du solide) et de la chimie (le processus de fabrication du cristal photonique sera abordé sur le site internet). 
Du fait de leurs propriétés optiques spécifiques (un tel objet serait par exemple en mesure de « ralentir la lumière » : comme l’explique Damien Bernier dans sa thèse [12]), les cristaux photoniques offrent de nouvelles perspectives pour le confinement, le stockage, le filtrage ou encore le guidage de la lumière : cela est susceptible d’intéresser (et intéresse déjà !) de nombreux domaines (imagerie, communications entre autres). C’est pour cela que depuis quelques années, l’intérêt des chercheurs vis-à-vis de l’étude et de la synthèse des cristaux photoniques est en hausse. 

Références

[1] http://fr.wikipedia.org/wiki/Onde_de_Bloch
[2] Richard Taillet, Optique physique : Propagation de la lumière, De oec , août 2006, p.323
[3] Cours d’électromagnétisme II de Pascal BALDI, 1er Semestre de 3ème année de Licence de Physique
[4] J.-M. LOURTIOZ, H. BENISTY, V. BERGER, J.-M. GERARD, D. MAYSTRE, A. TCHELNOKOV, Les cristaux photoniques ou la lumière en cage, GET et Lavoisier, 2003
[5] Lydie FERRIER, Micro-nanostructures à base de cristaux photoniques pour le contrôle 3D de la lumière, page 19-20, paragraphe 1.2.2, Ecole Centrale de Lyon, 2008
[6] http://fr.wikipedia.org/wiki/Zone_de_Brillouin (pour avoir une meilleur représentation : voir schéma)
[7] http://fr.wikipedia.org/wiki/Maille_%28cristallographie%29 (maille primitive, paragraphe « maille primitive») + http://www.iut-acy.univsavoie.fr/fileadmin/DUT/MPH/fichiers/semestre2/structure-materiaux/Espace- et-reseaureciproques-pour-aller-plus-loin.pdf (réseau réciproque)
[8] http://fr.wikipedia.org/wiki/Ars%C3%A9niure_de_gallium
[9] Cours d’optique de Mr Eric ARISTIDI du 2ème semestre de 3ème année de Licence de Physique, 2014 
[10] Lydie FERRIER, Micro-nanostructures à base de cristaux photoniques pour le contrôle 3D de la lumière, pages 23-24, paragraphe 1.2.5, Ecole Centrale de Lyon, 2008
[11] Damien BERNIER, Propriétés de superprisme des cristaux photoniques sur substrats SOI pour le démultiplexage en longueur d'onde, page 21, paragraphe 1.1.1.6, Université Paris-Sud XI, 2008 

لا يوجد تعليقات

أضف تعليق